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Normal grain growth in porous and 
dense compacts 

T A K A Y A S U  IKEGAMI ,  SHIN- ICHI  MATSUDA,  YUSUKE MORIYOSHI  
National Institute for Researches in Inorganic Materials, Namiki, Sakura-Mura, 
Niihari-Gun, Ibaraki 305 Japan 

HIROSHIGE SUZUKI  
Tokyo Institute of Technology, Meguro-Ku, Tokyo 152 Japan 

A rate equation of grain growth and a distribution function of grain radii were derived 
from the statistical viewpoint. The derived equation and function were successfully 
applied to the analysis of both the grain growth and grain radius distribution data in 
Cr-doped MgO. The diffusion coefficients of this sample were 103 times larger than the 
oxygen self-diffusion coefficients in pure MgO. 

1. Introduction 
When a powder compact is heated, not only 
densification but also grain growth occurs. Many 
densification studies [1, 2] have been made by 
taking care of only the mass transfer from the 
interfacial area to the neck surface. The necessity 
of f'mding a new densification model, however, 
has been emphasized by several workers [3, 4] for 
describing the sintering of fine powder compacts. 
Recently, direct observation of the sintering 
processes [5] gave important evidence that the 
densification of fine particles is influenced by 
grain growth, that is, by the mass transfer across 
grain boundaries. 

Burke [6], Feltham [7], and Hillert [8] have 
qualitatively derived the rate equations of a 
parabolic growth law for average grain size. Oel 
[9], and Tomandl [10] proposed a statistical 
approach to this problem, in which the theoretical 
treatment is mathematically equivalent to the 
theory of  the Ostwald ripening of Wagner [ 11]. 
In contrast to these papers, the present study was 
made to characterize factors influencing grain 
growth of a single-oxide ceramic. 

2. Diffusion paths 
Fig. 1 shows a schematic arrangement of grains, in 
which a topological requirement may make a 
curved grain boundary between two grains with 
different sizes [6]. If grain growth takes place, the 

diffusion through paths 1 and 2 may be enhanced 
by that through path V because of the deviating 
local configuration at the intersection of two neck 
surfaces and the grain boundary from an equili- 
brium state. If the enhanced mass is so large that 
the mass through paths 3 and 4 can be negligible, 
the rate of densification [12] depends on that of 
grain growth. 

3. Derivation of equations 
3.1. A rate equation of grain growth 
We make the following assumptions: 

(1) Grain growth is rate-determined by the 
migration of grain boundaries. 

(2) The normalized spatial distribution of grain 
radii Z / Z  m = f ( r / r  m) is unchangeable during grain 
growth, where Z is the number of grains having a 
radius r and r m is the radius in which Z has the 
maximum value Z m . 

From the Gibbs-Thompson relation [13], the 
difference in chemical potential A/.t between the 
adjacent interfaces of grains with radii r~ and r i 
may be given by 

[ali bli ~ 
A/2 = ~-~')'ili~-~-1 --S~L/=) , (1) 

where all and bli a r e  constants dependent on the 
topological situation around the grain rl ,  "YIIi is 
the interfacial energy and ~2 is the atomic/ionic 
volume, respectively. The flux density f of atoms/ 
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Figure l A model of the grain growth processin a porous 
body. 

ions is calculated from Equation 1 and Fick's 
first law [14] is 

~)~DIliTIli ( b---~li - a l i  ] (2) 
] -- kTWili \ r i rl ] '  

where Dill is the self-diffusion coefficient, k is 
Boltzmann's constant, T is the absolute tempera- 
ture and Wni is the thickness of the grain boundary 
layer, respectively. If the interracial area between 
these grains is given by knir 2, the rate of volume 
change, dvl/dt, in the grain rl is calculated as 

dr1 "-" ~N1 (blir ~ ) TlliDIliklli _ a~ir 

dt - ~T f o ,.~ WI1 i , r i 

where kiu is a constant dependent on the topo- 
logical situation around the grain r~, and N1 is the 
contact number of the grain rl.  The sum of dv 1]dt 
in growing grains dV]dt is equal to 

dV ~Zmr ~ f~(B,u]  
dt - kT  - -AaUl) f (u l )dul , (4)  

where rl]r m is replaced by ul, A1 is equal to 

[~O(~_l"~IliDIliklligllif(ui)/[u 
\i=~ ] 

B1 is equal to 

[fo(Ni~l~IliDIlikIliblif(ui)/l~iWIl,) dl~i] 
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Figure 2 Variation of statistical distribution curves of 
grain radii over a short time interval. 

and Uo is the value of rl/r m in which dva/dt is 
equal to zero, respectively. 

An average radius of grains R is given by 

R = r m u f u  du . u du . 

From assumption2, the integrated t e r m s  in 
Equation 5 should be constants irrespective of 
rm, and replacing f ou f (u )du[ fo f (u )du  by 
kl ,  R = k i t  m. The total volume of grains Vo in 

4 the compact is equal to Zmrmf  o kvu3f(u)du, 
where k v is the shape factor related to the volume 
characteristics of a grain. Replacing fo  k,,u3f(u) du 
by kz, we obtain 

Z --- k2-~m f " (6) 

The value of r calculated from dZ/dR = 0 is equal 
to the radius r~, in which Z is unchangeable with 
a slight increase in dR. The dV value should be 
equal to the total volume of grains in the shaded 
region shown in Fig. 2, and 

dRdV k2Rv~ f 3[ dr(.l]d, l 
- ~.ok~u - 4 ; ( u ) - u  au (7) 

is obtained, where u~ is equal to r'o[r m. From 
Equations 4 and 7, one can derive the rate 
equation of grain growth 

~2k] f ?  (Bu 2 - -Au) f (u)  du dt 

R d R =  

kT f~U,o kvua [ - -  4f(u) -- u dr(u) ] d u  J du 

( 8 )  



3.2. A distribution function o f  grain sizes 
A distribution function of grain sizes is obtained 
from the solution of the continuity equation [ 14] 

OZmf(r/rm) a [Zmf(r/rm) X i'] 
~t 0r (9) 

The function f(r/rm) has, by assumption 2, only 
one variable r/rm, and so OZmf(r/rm)/Ot=- 
(Vo/k2rSm) (drm/dt) [4f(r/rm) + (r/rm)df(r/rm)/ 
d(r/rm)], and 3[Zmf(r/rm) • k]/Or = (Vo/k2rSm) 
[kdf(r/r m)/d (r/r m) + r m f(r/r m) af/Or]. Using these 
relations and Equations 3 (dr = 3kv r2 dr), 8 and 9, 
one can derive 

--3k---~v 3kvu du -~u 

o(+) c) ~u --4 f(u), (10) 

where C is equal to [fu(BU2--Au)f(u)du] 
[fu; kvu3(--4f( u)-udf(u)/du)du] -1. By the 
condition df(u)/du = 0 at u = 1, 4C is equal to 

U=I  U = I  

If  A/k,, and B/k v are independent of r (assumption 
4), the integration of Equation 10 by replacing 
B/A with K R results in 

CoU 
f(u) = (u 2 _ 4Krtu + 4) s/2 

3KR 
x exp X/(1 - - K ~ )  tan-1 

where Co is a constant. 

(u-  2KR) ] 
2,/(1 

(11) 

4. Experimental details 
Pure magnesium chips (99.99%)* were dissolved in 
a high purity HC1 t aqueous solution, to which a 
high purity NH4OH J; aqueous solution was added 
to obtain magnesium hydroxide as a precipitate. 
The resulting precipitate was thoroughly wet- 
mixed with 4 mol% reagent grade Cr(NO3)3 �9 9H20 
and dried at 70 ~ C. The dried cakes were crushed 
lightly, calcined at 900 ~ C for 16h in flowing 02 
gas, hydrostatically pressed at 5000 kg cm -2, and 
fired at 1500 and 1600 ~ C for a given period in 
vacuum. The fired compacts were ground on 
successively freer grades of SiC powder, lapped 
on a high-speed wheel for 15min using a 1/am 
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Figure 3 Grain growth of Cr-doped MgO as a function of 
time. 

diamond slurry, and thermally etched at 1400 ~ C 
for 2h in flowing O2 gas. Scanning electron 
microscopy was used to determine grain sizes. 

5. Results 
It is very difficult to polish a porous compact, 
which is hardly beneficial for the quantitative 
examination of the present theory. All the fired 
samples have relative densities larger than 98% of 
the theoretical. Fig. 3 shows the isothermal grain 
growth in the form R 2 against time for Cr-doped 
MgO. As can be seen, grain-growth data follow the 
square kinetics R2--R2o =Kt and the rate con- 
stants K were equal to 1.9 x 10 -11 cm 2 sec -1 at 
1500 ~ C and 9.8 x 1 0  - l l  c m  2 s e e  -1 at 1600 ~ C. 

Fig. 4 shows two examples of the normalized 
planar distribution of grain radii. The respective 
data closely fit the experimental equation (the 
dotted line) proposed by Aboav and Langdon [15] 

Z = Z m exp {--a2[(r/rm) u2 -  112}, (12) 

especially in the range r/r m > 1, and a was equal 
to 3.8 independent of  the extent of grain growth. 

6. Discussion 
The experimental determination of the function 
f(r/rm) is very laborious, but the planar ones 
r were reliable [ 15-17].  Kendall and Moran 
[18] gave the important relation between those 
functions for a polycrystalline body having 
spherical grains 

(~m) r f = f(x/rm) dx 
r = R Jr ~---~------~-)" (13) 

*Johnson Matthey & Co, Inc, 74 Hatton Garden, London, UK. 
tFe < 0.05, Zn, Hg < 0.02, Pb, Cr, Mn, Co < 0.01 (ppm); Wake Pure Chemical Industry Ltd, Osaka, Japan. 
~:Na < 0.5, Ca, Mg, Fe < 0.i, Ni, Cu < 0.04 (ppm); Wake Pure Chemical Industry Ltd, Osaka, Japan. 
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Figure 4 Variation of Z/Z m with r/r m. The 
broken line was obtained from Equation 14, 
the dotted one from Equation 12 and the 
solid one from Equation 15. 

Since a sintered body, however, consists of grains 
having various polygonal shapes, the calculated 
value of ~(r/rm) in the region r < rm should be 
very over estimated as shown in Fig. 5. We con- 
veniently assume that all grains have the same 
shape as shown in Fig. 5, and that the probability 
of a plane cutting a grain with radius x is propor- 
tional to LDOF/LDOE in the range 0 < r < x/2.  
A more reasonable ~(r/rm) is given by 

0(r) ,12rI x/rm ,x 
R Jr X/(x 2 - - r  2) 

cot-'[(x/r)--tan30] (Cu B--~-+ A ) dr(u) 
+ 30 -3kv 3E u 

x ~  x / ( x 2 _ r 2  ). - - 3 k ~ 2  3kvu 4 f(u) 
The broken line in Fig. 4 is of  ~(r/rm) calculated is integrated as 

Cou 4 

f (u )  = ({u -- [2KR/(4 -- 3KR)] 2 + [4(4 -- 3KR + K~)/(4 -- 3KR)=]}) 4 

6KR tan_ 1 ( 4 "  3KR)U -- 2KR ] 
x exp %/(4 -- 3KR --  K ~ , ) 2 - , f f ( 4 ~  ---- 3--KR-----~-R)] " 

D 

from Equation 14 with Equation 11 and K R - 
0.93. Fig. 6 shows the distribution curves obtained 
from reported data [15, 16]. The calculated distri- 
bution curves fit the experimental data well in the 
range u > 1, but are appreciably larger than those 
for u < 1. This means that the reducing speed of 
smaller grains in size is very much higher than 
those calculated from Equation 3 based on the 
generally accepted assumption 4 [9] in practice. 
Estimated from Equation 10 by the method of 
trial and error, 

I 
a random 

plane 

Figure 5 The geometry involved in the intersection of a 
grain by a random plane. 

(15) 

The solid lines in Figs 4 and 6 prove the successful 
result of the foregoing calculation with Equation 
15 and K R = 0.85 or = 0.6, respectively. 

The spread of the distribution curves concerned 
increases with decreasing KR, the value of which 
depends on the properties of grain boundaries 
(factors au, bli ,kili ,  VII/, Dill and ~ ] I l i ) "  I f  pores 
and/or impurities have statistically a slight influence 
on the development of  a geometrical structure, 
KR should be constant during isothermal growth. 
These discussions may be supported by Aboav 
and Langdon's data [15, 16] (the constant a and 
the empirical linear relation R = kc(n -- 2) 
between R and the number of  sides n with a 
suitable constant kc). 
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Figure 6 Variation of the functions 
(o(r/rm) , which are drawn to have the 
same maximum value. The broken line 
was obtained from Equation 14, the 
dotted one from Equation 12 and the 
solid one from Equation 15. z~-.. c~ = 
2.8 [15], [] - - -~  = 3.1 [16]. 

If  the variation of 7i, DI or WI is negligible 
during grain growth, and if a geometrical arrange- 
ment can be expressed as shown in Fig. 1 (LAOC = 
LBOC), one can calculate a rough D I value from 
Equation 8 by using estimated (ki]i, 71, WI), 
measured (t, T, KR) and known (k, ~2) values. 
Z ~ t  k n l  is nearly equal to 3kv. From the rela- 
tion LAOC =LBOC, a ( =  4 / b )  is calculated as 
(2 cos/3/2)/(cos 0/2), which is virtually a constant 
(= 2) for any pair of grains. Since Cr-doped MgO 
should be single-phase for the high solubility of  Cr 
in MgO [19], the W I value was estimated as 0.5 nm. 
The reported ratios of interfacial energy to surface 
energy [20, 21] are 0.2-0.5 for oxide ceramics, in 
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Figure 7 Comparison of the calculated diffusion co- 
efficients with the oxygen self-diffusion coefficients in 
MgO. 

general. The surface energy of MgO is evaluated as 
1000 erg cm -2 [22], and we roughly estimated the 
3'i value of the present sample as 300 erg cm -2. The 
ratio of the integrated terms in Equation 8 was 
calculated from the relations C = A (4 -- 3KR)/12kv 
and A = 6Di71kw/W1 instead of integration of 
those terms. Fig. 7 shows the calculated DI values 
together with oxygen self-diffusion coefficients 
in pure MgO [23]. The ratio (~  103) between 
those values is nearly equal to that between 
the rate constants of the present and undoped 
(4 x 10 -is crn 2 sec -1 at 1500 ~ C) MgO [24]. 

Fig. 8 shows reported data [4] on grain 
growth of a relatively porous BeO (a value of 
relative density p varied from 57% to 94% of 
theoretical). The drawn curve was obtained from 
Equation 8 with the suitable rate constant and 
relations log p(1 -- P o ) / p o ( 1  - -  # )  = k e  log ( R / R o )  

and ~ l k u i = 4 k p ( 1 - - p )  [12], where P0 and 
Ro are the initial values o fp  andR,  and ke and kp 
are experimentally obtained constants, respectively. 
The slope of the drawn curve in the low-porosity 
region is close to �89 which is in accordance with the 
present as well as reported [25, 26] grain-growth 
data. These results mean that pores have an un- 
noticeable effect on grain growth, which is the 
opposite to other data (slopes < ~) reported by 
several workers, notably Kingery and Franqois 
[27], and Gupta [28]. For these different results, 
no explanation has yet been given. 

7. Conclusions 
A rate equation of grain growth has been derived 
statistically for oxide ceramics with various 
relative densities, and the diffusion coefficients 
of  Cr-doped MgO calculated from this equation 
were 103 times larger than the oxygen self- 
diffusion coefficients in pure MgO. 
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Figure 8 Grain growth of relatively 
porous BeO. 

The  spat ia l  and  p lanar  d i s t r i bu t ion  func t ions  

o f  grain radii  were der ived f r o m  t h e  c o n t i n u i t y  

equa t i on .  The  spread o f  the  size d i s t r i bu t ion  

depends  o n  the  p roper t i e s  o f  grain boundar i e s .  
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